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Abstract

Although refractive index and mass density as two fundamental properties have been extensively 

investigated, they have been largely treated in a separate and independent way. Here a wealth of data on 

refractive index and mass density for pure materials (e.g., organics, inorganics and minerals) and 

inhomogeneous mixtures including aerosols are collected and examined, showing that refractive index 

and mass density are in fact closely related to each other. Theoretical analysis reveals that a denser 

material tends to have a larger refraction index because of a greater number of induced electric dipoles 

when it is exposed to an electric field. An analytical expression that relates refractive index to mass 

density for pure material is derived, and further extended to inhomogeneous mixtures such as ambient 

aerosols by formulating a self-consistent effective medium theory. Analysis of the effective medium 

theory further reveals that the mixing rule for calculating the effective refractive index of aerosol 

particles should be consistent with the corresponding relationship between refractive index and mass 

density, providing theoretical guide for choosing the mixing rule to calculate aerosol refractive index.  
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1. Introduction

Refractive index is a fundamental optical property of aerosol particles that determines light 

scattering by small aerosol particles (van de Hulst 1957; Bohren and Huffman 1983). Material mass 

density is a fundamental physical property of aerosol particles that is crucial for studying aerosol 

dynamics such as deposition (Seinfeld and Pandis 1997). These two quantities are also often required 

together in many areas of aerosol research. For examples, a variety of instruments that have been 

developed over the last few decades use different approaches to measure aerosol number size 

distributions (see McMurry 2000 for a recent review). The instruments built on the principle of aerosol 

dynamics such as impactors measure the "aerodynamic size" that depends on particle density, in addition 

to the geometrical size and geometrical shape. The "electric mobility size" obtained by electrostatic 

classification such as DMA depends on particle shape and size, but not on density. "Optical sizes" by 

optical spectrometers depend on particle size, shape, as well refractive index. These measures of particle 

size can be very different, depending on the specific properties involved in the instruments. Converting 

from one measure of size to another typically requires information on particle refractive index and mass 

density. Therefore, accurate knowledge of refractive index and density of aerosol particles is critical for 

comparing measurements built on different principles. Another area that requires both refractive index 

and density of aerosol particles is quantification of aerosol effects on climate, which calls for coupling 

of aerosol dynamics models with aerosol optics models.

Despite the simultaneous need for both quantities, refractive index and density have been largely 

investigated, treated, and used in a separate and independent way by aerosol optics and aerosol 

dynamics communities. No studies have been devoted to the relationship between these two 

fundamental aerosol quantities, and as a result, it is unclear if there is actually a relationship between 

them. This is especially true for aerosol research where both quantities are often required together but 
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treated as independent quantities. This situation becomes increasingly inadequate for aerosol-related 

research. Our first objective is to answer the fundamental question as to whether the two quantities are 

related to each other, and what is the relationship. We start with pure materials, and then extend the 

results to mixtures such as aerosols and examine mixing rule used for calculating refractive index. A 

huge amount of data on pure materials (e.g., organics, inorganics and minerals) that is available in 

literature (most in fields other than aerosol science) are collected and examined. 

2. Empirical Relationships

As two fundamental material properties, refractive index and mass density have been extensively 

investigated, and a wealth of data on individual quantities have been published for pure organic and 

inorganic compounds as well as minerals. However, in previous studies, refractive index and mass 

density have been treated separately and independently. To seek if there is any relationship between the 

refractive index and mass density, we collect, group, and examine the data sets previously published in 

literature for over 4000 pure organic and inorganic compounds. Figure 1 juxtaposes these results (black 

dots). Also shown in this figure are some data from binary mixtures (blue crosses) and from ambient 

aerosol particles (green triangles). Evidently, there is an overall increasing trend of refractive index with 

increasing mass density despite the large scatter. Furthermore, when the mass density is small such as 

dilute gases, the increase of refractive index with mass density is approximately linear; but the linearity 

gradually disappears when mass density becomes larger such as in liquids and solids. 

3. Theoretical Expressions

The increase of the refractive index with increasing mass density is surprising at first glance 

considering the wide variety of materials involved. What is the physics underlying the positive empirical 

correlation between refractive index and mass density? The theoretical basis for the relationship of 

reflective index to mass density can be built on the polarization equations of state, i.e., the relationship 



5

of macroscopic (bulk) material properties such as refractive index (or dielectric constant) to microscopic 

properties such as the molecular polarizability (Karam 1996) as follows. In this paper, all the equations 

are given in the “mks” unit system.

Consider a bulk material as a system of molecules that react to the incident electric field like 

electric dipoles. When a piece of dielectric is placed in an applied electric field, the polarization P is 

given by 

0n locP E  ,                                                      (1)

where n is the number density of the material, is the mean molecular polarizability per molecule, 0

is the dielectric constant in vaccum, and Eloc is the mean local electric field experienced by an individual 

molecule. The polarization can be also related to the applied electric field E by

  01P E   ,                                                     (2)

where is the dielectric constant of the material. A combination of (1) and (2) yields

       1 loc
n

E

E
                                                           (3)

Elimination of Eloc and E using the Lorenz expression (Lorenz 1960) 

 
0

1
2

3 3loc

P
E E E


                                                (4)

yields the so-called Clausius-Mossotti relation 

 
 

1

2 3
n

 






,                                                            (5)

Further application of the Maxwell relation 2m  to Eq. (5) yields the Lorentz-Lorenz expression for 

the refractive index (m)                                                         

3
n

sm


 ,                                             (6a)
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
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
, (6b)

where ms is often called specific refraction. This equation has been widely used to infer molecular 

polarizabilities from measurements of refractive indices. In aerosol research, the mass density , not the 

number density, is often measured and used. The two densities are simply related to each other by

A
n

N

M
  ,                                                                  (7)

where NA is the universal Avagadro's number and M is the molecular weight of the material. After substitution 

of Eq. (7) to Eq. (6), the Lorentz-Lorenz expression becomes

                                    
 
 

2

2

1

32
A

s

m N
m

Mm

 


 


.                                                   (8)                       

Equation (8) is the fundamental equation that relates refractive index to mass density, and 

suggests a linear increase of the specific refraction with the mass density. To compare this prediction 

with measurements, the data shown in Fig. 1 are redisplayed in Fig. 2 in the form of the specific 

refraction against the mass density.  Evidently, the theoretical expression describes the measurements 

reasonably well. This is physically understandable because, according to molecular optics, refractive 

index results from the collective response of electric dipoles excided by the external applied field and 

the number of dipoles in a given volume is closely related to the mass density (Lagendijk et al. 1997). It 

is noteworthy that this idea is similar to the discrete dipole approximation (DDA) for calculating light 

scattering by nonspherical particles (Drain and Goodman, 1993).

Equation (8) also reveals that in addition to the density, refractive index depends on the 

polarizability and the molecular weight as well. This dependence on the polarizability and the molecular 

weight of reflective index along with the large differences in these two quantities among different 

substances provides a physical explanation for the scatter of the data points in the above two figures. 
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The overall increasing trend of refractive index with increasing density suggests that the dominant role 

of mass density in determining refractive index. 

Now we use this expression to examine the linear relationship for materials with small mass 

densities such as dilute gases. For such materials, there is little molecular interactions and the refractive 

index is close to 1. Under this condition, it can be shown by use of the Taylor expansion around m =1  

that Eq. (8) approximately becomes 

 
   

2

2

1 2
1

32
s

m
m m

m


  


.                                                  (9)

Subsequently, Eq. (8) becomes

1
2

AN
m

M

                                                                (10)

Equation indicates a linear relationship between refractive index and mass density in the limit of 

extreme dilutions, providing a physical explanation for the data points exhibiting a linear dependence of 

the refractive index on the mass density in Figs. 1 and 2. As will be shown below, Eq. (10) also has 

important implications for the linear mixing rule when studying inhomogeneous mixtures. Equation (8) 

is more general, covering gases, liquids as well as solids.

4. Effective Medium Theory 

Ambient aerosol particles are generally mixtures of different chemical compositions, which 

leads to this theoretical question: Can and how Eq. (8) be extended to mixtures such as ambient aerosols?  

One of the approaches to treating inhomogeneous mixtures is the so-called effective medium 

theory by which a mixture is considered a homogeneous material having effective quantities. The 

effective quantities of a mixture are calculated from some kind of mixing rules (Heller 1965; Ossenkopf 

1991). According to Eq. (8), four quantities (mass density, molecular weight, refractive index, and 

polarizability) should be considered in any effective medium theory. The mixing rules for the effective 
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mass density and effective molecular weight are well known and straightforward from the additivities of 

the volume and mass.  The effective density e is given by

e i i
i

f  ,                                                                     (11)

where the summation is over all the constitutes of the mixture, and fi  and i are the volume fraction and 

the density of the ith component of the mixture, respectively. The effective molecular weight Me is just 

the apparent molecular weight of a mixture given by (Wallace and Hobbs 1977)

           
1

1 i i i
i i

i i ie i i

f
f

M M M

 


    
 

   ,                                        (12)

where i and Mi  are the mass fraction and the molecular weight of the i-th constitutes, respectively. 

A mixing rule for the effective polarizability is necessary to complete the effective medium 

theory. Recall the formulation of the Lorentz-Lorenz theory on the state equation of polarization of a

pure material. An implicit assumption is that every molecule of a pure substance are identical with the 

mean polarizability of all the molecules, i.e., the total polarizability divided by the total number of 

molecules. Extending this idea to a mixture, we obtain the mixing rule for the effective polarizability

1i i i A i
i i i i i i

e i i i
i i iA i i

N y N
f f

x
N yN M M

 
   


 

     
 

 
    ,                (13)

where e and i are the polarizabilities for the effective medium and the ith component of the mixture, 

respectively; y and yi are the number of moles of the mixture and the ith component, respectively; xi is 

mole fraction of the ith component of the mixture.

Mixing rules for calculating refractive index of a mixture have been a subject of extensive 

research. One of the commonly used rule is the so-called Lorentz-Lorenz mixing rule given by (Heller 

1945, 1965)
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se i si
i

m f m ,                                                                                      (14)

where mse and msi are the effective specific refraction and the counterpart for the ith component of the 

mixture, respectively.  This mixing rule has been widely used in investigation of ambient aerosols 

(Stelson and Seinfeld 1982; Stelson 1990; Tang and Munkelwitz 1994; Tang 1996). 

It is easily shown that the effective medium as defined by the above effective variables (effective 

molecular weight, effective density, effective polarizability and effective refractive index) satisfies  the 

Lorentz-Lorentz equation such that

3
e A

se e
e

N
m

M

                                                                       (15)

According to Eq. (15), just like the pure material, the effective refractive index of a mixture also 

increases with the effective mass density. This prediction is supported by the limited number of 

observational data from binary mixtures (blue crosses) and ambient aerosols (green triangles) shown in 

Figs. 1 and 2. Furthermore, the above set of mixing rules provides a self-consistent way to define an 

effective medium that involves several variables.  

In aerosol research, the mass and molar concentrations are often measured as well. It is therefore 

desirable to formulate the effective medium equations in terms of the mass fraction i and the mole 

fraction xi in addition to the volume fraction fi. For convenience, the three sets of equations are 

summarized in Table 1. It is noteworthy that the three sets of equations are equivalent and can be easily 

transformed to one another by use of the relation between the volume fraction fi, the mass fraction i and 

the mole fraction xi given by

     e e i
i i i

i i e

M
f x

M

 
 

                                                               (16)
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5. Implications for Mixing Rules

Besides the mixing rule given by Eq. (14), another commonly used mixing rule for calculating 

aerosol refractive index is the linear one, under which the effective refractive index simply is the 

volume-mean refractive index given by (Hanel, 1968; Ouimette and Flagan 1982; Hasan and Dzubay 

1983; Lowenthal et al. 2000; Hand and Kreidenweis 2002)

e i i
i

m f m                                            (17)

Now the questions are: Is there a relationship between the two different mixing rules, and which one 

should be used in practice? 

It is easy to show that this mixing rule corresponds to the linear relation between refractive index 

and mass density as described by Eq. (9), which holds for dilute mixtures only. In fact, this linear mixing 

rule is applicable to a more general class that only requires the refractive indices of every components 

are close to each other (we name such materials as quasi-homogeneous systems hereafter). Without loss 

of generality, assume all the refractive indices of a quasi-homogeneous material are close to a common 

value m0. Taylor expansion of the specific refraction around m0 yields

 
 

 
   

 
2 2

0 0
022 2 2

0 0

1 1 6

2 2 2
s

m m m
m m m

m m m

 
   

  
.                        (18)

Applying Eq. (18) to the specific refractive indices of the effective medium and each component of the 

mixture and then substituting the results into Eq. (13), we obtain the linear mixing rule given by Eq. 

(17). 

The above derivation implies that the commonly used volume-mean rule for refractive index 

only works for quasi-homogeneous mixture where refractive indices of each component are similar. 

According to proceeding discussions, this rule quite accurately characterizes a mixture of dilute gases 

such as the air. However, aerosol particles normally do not exhibit this feature. Therefore, the general 



11

Lorentz-Lorentz mixing rule should be better than the linear mixing rule in calculation of effective 

refractive indices of aerosol particles. Previous comparison studies also demonstrated this point (Heller 

1965). These results suggest that the choice of a mixing rule for calculating effective refractive index 

should depend on the relationship of the refractive index to mass density. The nonlinear mixing rule as 

described by Eq. (18) should be used if the dependence of refractive index on mass density follows the 

more general Eq. (8), and the linear mixing rule should be used if the dependence of refractive index on 

mass density can be described by Eq. (8),

6. Concluding Remarks

Published data on refractive index and mass density for pure materials (e.g., organics, inorganics 

and minerals) and inhomogeneous mixtures including aerosols are collected and used to examine the 

relationship between refractive index and mass density. It is found that there is a general trend for 

refractive index to increase with increasing mass density. The Lorentz-Lorenz relation that relates 

dieletric constant to polarizability is introduced to quantify the relationship between refractive index and 

mass density for pure materials, providing a physical explanation for this positive correlation. The 

formulation is further extended to inhomogeneous mixtures such as aerosols by establishing a self-

consistent effective medium theory. The commonly used mixing rules for calculating effective refractive 

index are derived from the effective medium theory and compared in view of the corresponding 

relationship between refractive index and mass density. The result indicates that not only refractive 

index and mass density are related to each other, but also this relationship is pivotal for choosing the 

appropriate mixing rule for calculating effective refractive index of aerosol particles.  

Several points are noteworthy. First, the data on the effective refractive index and mass density 

used in this paper are limited; more data are needed to substantiate the finding. Second, there has been 

some confusion on the mixing rules used in calculation of effective refractive index and mass density. 
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This issue deserves some attention in future research. Finally, a single value is often assigned to aerosol 

particles regardless of their sizes. However, many studies have shown that some aerosol particles such 

as combustion aggregates often assume open, fractal-like structures with mass density depending on 

particle sizes (Sorensen 2001). Mass densities of solid hydrometeors (e.g., snowflakes, graupels and 

hailstones) are also found to depend on particle sizes (Pruppacher and Klett 1997). The relationship of 

refractive index to the mass density suggests that the effective refractive index should be size-dependent 

for these particles as well.
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Figure Captions

Figure 1. Dependence of refractive index on mass density. The black dots are data for pure materials, 

including organic compounds, inorganic compounds and minerals from on line handbooks 

(www.knovel.com). Blue dots are for binary mixtures such as salt solutions. The green triangles 

represent a few data points for ambient aerosol particles. 

Figure 2. Same as Fig. 1, except for the specific refractive index on mass density. 
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Table 1. Self-Consistent Mixing Rules for Effective Inhomogeneous Mixtures

Effective 

variables

Volume fraction fi Mass fraction i Mole fraction xi

Molecular 

weight
1

1 1 N
i i

ie e i

f

M M


 

 
1

1 N
i

ie iM M





1

N

e i i
i

M x M




Density

1

N

e i i
i

f 



1 i

ie i


 

 1 1 i i

ie e i

M x

M 
 

Polarizability 1

1

N
i i i i i i

e
ii i

f f

M M

 




 
  
 


1

1 1

N N
i i i

e
i ii iM M

 
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 
  
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 

1

N

e i i
i

x 

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Specific 

refraction
1

N

se i si
i

m f m



1

1 1

N N
i i

se si
i ii i

m m
 
 



 

 
  
 
 

1

1 1

N N
i i i i

se si
i ii i

x M x M
m m

 



 

 
  
 
 

Molar 

refraction
1

N
e i i

e i
ie i

M f
R R

M


 

 
1

N
i

e e i
i i

R M R
M




 
1

N

e i i
i

R x R




3s R

M N
R m P




   , where PR is referred to as molar polarization. Molar polarization is the molar 

fraction for zero frequency.  Mole fraction = ratio of the number of moles of one constituent of a mixture 

or solution to the total number of moles of all the constituents.  
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Fig.1 
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Fig. 2.




